Promoting Effects of Carbon Dioxide on Dehydrogenation of Propane over a SiO₂-supported Cr₂O₃ Catalyst

Isao Takahara* and Masahiro Saito*
National Institute for Resources and Environment (NIRE), 16-3 Onogawa, Tsukuba, Ibaraki 305

(Received August 1, 1996)

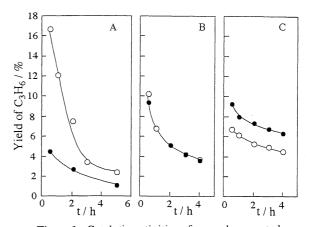
The effects of carbon dioxide in the dehydrogenation of C_3H_8 to produce C_3H_6 were investigated over several Cr_2O_3 catalysts supported on Al_2O_3 , active carbon and SiO_2 . Carbon dioxide exerted promoting effects only on SiO_2 -supported Cr_2O_3 catalyst. The promoting effects of carbon dioxide over a Cr_2O_3/SiO_2 catalyst were to enhance the yield of C_3H_6 and to suppress the catalyst deactivation.

The utilization of carbon dioxide has recently received much attention since the global warming mainly due to carbon dioxide was recognized as one of the most serious problems in the world. The catalytic hydrogenation of CO_2 to produce methanol, hydrocarbons, etc., and the CO_2 reforming of methane to syngas have been extensively studied. Furthermore, it has been reported that CO_2 has several promoting effects on the conversion of hydrocarbons, for example, oxidative coupling of methane, ¹ aromatization of propane ² and dehydrogenation of ethylbenzen. ³ ⁴ The authors have investigated the effect of CO_2 on the dehydrogenation of propane over supported Cr_2O_3 catalysts, and found that CO_2 has promoting effects on a silica-supported Cr_2O_3 catalysts, as described in this paper.

Several supported Cr_2O_3 catalysts were prepared by a impregnation method using an aqueous solution of chromium nitrate. The supports used were γ -Al₂O₃, active carbon (AC) and SiO₂. The catalysts prepared were calcined at 823 K in air for 2 h. The catalysts were characterized by X-ray diffraction (XRD). The XRD patterns of Cr_2O_3/Al_2O_3 and Cr_2O_3/AC showed the diffraction lines ascribed only to the phases of respective supports. In the case of Cr_2O_3/SiO_2 , a Cr_2O_3 phase and an amorphous SiO_2 phase were observed. The dehydrogenation of C_3H_8 was conducted under atomospheric pressure of $C_3H_8 + CO_2(Ar)$ at 823 K by using a fixed bed flow reactor.

The main products of the conversion of C_3H_8 in the presence of Ar were C_3H_6 and H_2 , while those in the presence of CO_2 were C_3H_6 , H_2 , and CO, as shown in Table 1. Since the selectivities for C_3H_6 were more than 90%, the dehydrogenation of C_3H_8 to C_3H_6 should be the main reaction both in the presence

of CO_2 and in the absence of CO_2 . The yield of H_2 + CO was found higher than C_3H_6 yield over all catalysts used in the present study. There might be three possible routes for CO formation; the first one via the successive reactions 1 and 2, the second one via the reaction 3 and the third one via CO_2 reforming of C_3H_8 (reaction 4) as shown below.


$$C_3H_8 = C_3H_6 + H_2 \tag{1}$$

$$CO_2 + H_2 = CO + H_2O$$
 (2)

$$C_3H_8 + CO_2 = C_3H_6 + CO + H_2O$$
 (3)

$$C_3H_8 + 3CO_2 = 6CO + 4H_2$$
 (4)

Figure 1 shows the change in catalytic activities of several supported Cr_2O_3 catalysts with time on stream. The activity of the Cr_2O_3/Al_2O_3 catalyst were much lower in the presence of CO_2

Figure 1. Catalytic activities of several supported Cr_2O_3 catalysts as a function of time on stream. Catalyst: $A=Cr_2O_3(15 \text{ wt\%})/Al_2O_3$, $B=Cr_2O_3(5 \text{ wt\%})/AC$, $C=Cr_2O_3(5 \text{ wt\%})/SiO_2$, Reaction conditions: 823 K, W/F=2 g-cat•h/mol,

Reaction conditions: 823 K, W/F=2 g-cal^{*}In/mot, Feed gas ratio: $C_3H_8/CO_2=1/1(\bullet)$, $C_3H_8/Ar=1/1(O)$.

Table 1. Products of the conversions of C₃H₈ in the presence and in the absence of CO₂ over several supported Cr₂O₃ catalysts^a

	_	Yield / %			Selectivity / %			
Catalyst	Feed gas ^b	СзН6	H2	CO	СзН6	CH4	C2H6	C2H4
Cr2O3(15wt%)/Al2O3	C3H8/Ar	16.5	21.2	-	95.5	2.1	1.6	0.8
	C3H8/CO2	4.3	3.6	3.9	91.3	6.4	0.7	1.6
Cr2O3(5wt%)/AC	C3H8/Ar	10.1	12.2	-	94.4	2.3	1.2	2.1
	C3H8/CO2	9.3	5.1	6.4	93.6_	2.9	1.3	2.1
Cr2O3(5wt%)/SiO2	C3H8/Ar	6.5	7.2	-	90.4	2.7	2.7	3.5
	C3H8/CO2	9.1	8.0	3.1	94.0	1.8	1.8	1.6

^a Reaction conditions: 823 K, W/F=2 g-cat•h/mol.

^b Composition of the feed gas: C₃H₈/CO₂(Ar)=1/1(molar ratio).

974 Chemistry Letters 1996

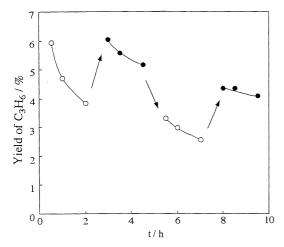


Figure 2. Change in the C₃H₆ yield with alternate feeds of C₃H₈/Ar and C₃H₈/CO₂/Ar over a Cr₂O₃/SiO₂. Reaction conditions: 823 K, W/F=0.62 g-cat•h/mol, Feed gas: $C_3H_8/CO_2/Ar = 1/2/7(\bullet)$, $C_3H_8/Ar = 1/9(O)$.

than that without CO₂. The activity of the Cr₂O₃/AC was independent of the presence of CO2. On the other hand, the activity of Cr_2O_3/SiO_2 catalyst in the presence of CO_2 was surprisingly found to be 40% higher than that without CO₂.

In order to study the contribution of CO2 in the conversion of C₃H₈ to C₃H₆, catalytic tests with alternate feeds of C₃H₈/Ar and C₃H₈/ CO₂/Ar over a Cr₂O₃/SiO₂ catalyst were carried out. The results shown in Figure 2 clearly indicate that the presence of CO₂ markedly improved the yield of C₃H₆. This catalytic performance is a proof that CO2 plays a promoting role in the conversion of C₃H₈ to C₃H₆. Although further detailed studies are under achievement, the boundaries between Cr₂O₃ and SiO₂ might have an important role in the promoting effect of CO2.

The effect of CO₂ addition on the deactivation of a Cr₂O₃/SiO₂ catalyst. was also examined (Figure 3). In this case, the catalyst weight for the dehydrogenation of C₃H₈ withourt CO₂ was 50% larger than that for the reaction in the absence of CO₂ in order to obtain the same initial yield of C₃H₆ in the both reactions. The decrease in the yield of C₃H₆was found much less in the presence of CO₂ than in the absence of CO₂. At the time on

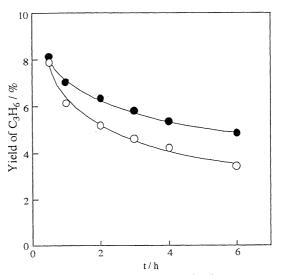


Figure 3. Effect of CO₂ on the deactivation of a Cr₂O₃(5 wt%)/SiO₂. Reaction conditions: 823 K,

Feed gas: $C_3H_8/CO_2/Ar = 1/2/7(\bullet, W/F=0.62 \text{ g-cat} \cdot \text{h/mol})$,

 $C_3H_8/Ar = 1/9(O, W/F=0.93 \text{ g-cat} \cdot \text{h/mol}).$

stream of 6 h, the yield of C₃H₆ in the presence of CO₂ was about 40% higher than that without CO₂. This finding suggests that the addition of CO₂ could suppress the deactivation of the catalyst.

In summary, the promoting effects of CO₂ over a Cr₂O₃/SiO₂ catalyst were to enhance the yield of C₃H₆ and to suppress the catalyst deactivation.

References

- T. Nishiyama and K. Aika, J. Catal., 122, 346 (1990).
- S. Yamauchi, A. Satsuma, and T. Hattori, Sekiyu Gakkaishi, **37**, 278 (1994).
- S. Sato, M. Ohhara, T. Sodesawa, and F. Nozaki, Appl. Catal., 37, 207 (1988).
- M. Sugino, H. Shimada, T. Turuda, H. Miura, N. Ikenaga, and T. Suzuki, Appl. Catal., 121, 125 (1995).